PMM U.S.S.R.,V0l.50,No.2,pp.142~146,1986 0021-8928/86 $10.00+0.00
Printed in Great Britain © 1987 Pergamon Journals Ltd.

ON A POWER SERIES EXPANSION OF THE GRAVIATIONAL POTENTIAL OF AN
INHOMOGENEOUS ELLIPSOID”

I.I. KOSENKO

An algorithm is given for successively computing the partial derivatives
of the gravitational potential of an inhomogeneous ellipsoid, whereby the
power expansion of this function can be constructed. The relevant
recurrence procedures are proved. The coefficients of the Taylor series
of the potential can be used when analysing the stability of points of
libration. Ways of applying the results are indicated. The case of a
homogeneous ellipsoid was considered in /1-—3/.

1. The power function. oOur aim below is to obtain an efficient algorithm for com-
puting the coefficients of the power expansion of the Hamiltonian function in the problem of
the motion of a point in the gravitational field of an inhomogeneocus rotating ellipsoid. For
this, we in fact need to compute the Taylor series for the gravitational potential.

Let §:R%®— R, be the density, specifying the mass distribution in the ellipsoid, where
R,={z=R: 2> 0}. It is such that §: x — §, (), where y numbers the ellipsoids of the one-
parameter family of like elliposids:
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z; (i =1,2,3) are coordinates in R3% and a; (i = 1, 2, 3) are the semi-axes of the chosen initial
ellipsoid. The function § specifies the finite Radon measure § (x)dx, where dx is the
ordinary Lebesgue measure in R2?. The measure has to be finite, since the gravitating mass
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is finite, or & & L; (R3).

We can justify a study of this distribution because it approximately gives the density
for certain ellipsoidal objects in the dynamics of star systems. The latter may be elliptic
galaxies or the ellipsoidal centres of certain spiral galaxies.

The summability condition for § leads to the summability of 8§, & L, e, +), since the

function &8, (x®) x%(e > 0) is integrable in the set [e, +00). Turning to the case of an interior

point, described in /4/, we obtain the relation for the power function
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Here, f is the gravitational constant and s satisfies the equation
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The case of an exterior point in essence leads to the previous case if the density is
interpreted as a distribution.

Let us show that the relations for the potential obtained in /4/ alsoholdwhen 8 & L, (R%).
In particular, we shall prove (1.2). The only thing that might stop us is divergence to zero
with respect to the variable p of the integral in (1.2).

We write
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U (x)=Ue(x) + Ae(x), Adm—j§ &@xi

Ua(x)=fﬂaiazas[s 8i(w) S (5) dus+ S 8i(w) S (0)dp

where [, is the gravitational potential of the layers external to the ellipsoid D, specified
by the inequality x;*/a,® + x2la;® + z5%a,® e, | - | is the Euclidean norm in RS2,

For, if 6 = L, (R?), then the Newtonian potential

d{y)dy
U""=§—nx—yu

is a locally Lebesqgue-integrable function (see e.q., /5, p.24/), defined almost everywhere.
Since a Lebesgue integral is an additive set function, our expansion of U holds by virtue of
the division R*= (R®\ D,) U D,» The integral as a set function has the property of absolute
continuity (/6, p.282/). Hence A,(x)—+0 as e—0, and finally U, (x> U (x}, xR\ {0}.

We specify the absolutely continuous function

+oo
% (B)= S 8i (0)do
e

It is well defined, since §; & L, [p, +o0) for any p >0. Using the extension to the case
of a Lebesgue integral of the formula for integration by parts (/7/,p292/) in the limits
K p< + , and apssing in this formula to the limit as e¢-— (0, we obtain
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if we have the condition = (p) S () >0 as p— 0. It will automatically be satisfied e.g., if
% (p) has a limit as p— 0, which is true in most applications. Hence we can write the
potential as
4o
U (x) = fraiasa S % ( )i
= 10243 13 )
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We know from potential theoxry that, if § & €= (G) in the domain G C R®, then U & C= (G).
The same is true for analyticity in G. In the case of an ellipsoidal mass distribution,
smoothness of §, in an interval leads to smoothness of U in the corresponding ellipsoidal
layer.

2. Fundamental theorems. The equations of motion of a star in the coordinate system
rotating with angular velocity w along with the galaxy about its principal central axis of
inertia are

2" — 20z, — ofz; = Uy, 2" + 202, — 0%y = Uy, 3" = U,

We transform to dimensionless variables in accordance with the relations ¢ =1/e, 7; =
18, (i=1,2,3), ! = a)® + a,®> + a3 and obtain the new equations of motion

§1’ — 28 —§ = Aa,, E 425 — £ = A&, B = AE.

The prime denotes differentiation with respect to the new independent variable T- In dimension-
less variables the power function is

AR =p Sh(p) Ty b= 2 ak+u 2.1)
o
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¥ () =50 5 (1)
Q (uw) = [(oz1 + u) (g + u) (a5 + W)y, a= VPa, (i =1, 2, 3)
If we perform a Legendre transformation and pass to the Hamiltonian system

Y=Hy W=—Hy & nER 2.2)
the Hamiltonian becomes
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HED =2+ b —nl) —A®

To study the local behaviour of this system in the neighbourhood of a position of equili-
brium, we need to know the power series expansion of H. For this, we have to compute the
expansion of the function A, This means in practice that we must be able to calculate the
partial derivatives of A of the requisite order.

It will be assumed throughout that the function x (or &) is bounded, as we assumed when
obtaining the expression for the potential. When evaluating the partial derivatives of A (§),
we require differentiation of the function I: R®\ {0} - R given by

%y (‘ Falrd Kex 1 ra L3S ) P 1Y
I@ =) Flu, H2ip, ldu {2.9)
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where It and pu are given by (2.1). The function F: R, X (R® {0}) >R is analytic and is given
by

P P+ BT
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where PF(5Y{i=1,2; £ =0,...,n) are polynomials in &, &, & and all the P (& depend

only on 2 (i = 1,2,3) and have positive coefficients. Moreover, deg P, >1 and with § =
RN {0}, P,°(8) >0 (it is positive definite).

Evalutation of thenext derivative of higher order implies obtaining integrals of type
(2.3) with integrands of type (2.4), in which all the above properties of polynomials P,-"' (&)

(i=1,2,k=0,...,n) are satisfied. At the start of this process, starting from (2.1), we
must put F (u, ) Fy (w) p/Q (¢). The functions (2.4) with these properties form a module M
over the ring of polynomials RI§;, E,, E;] of three variables with real coefficients.

Theorem 1. 1f ye= L, {R) and F& M, then T&C (RPN {0}) and we have
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Proof. The proof is gquite laborious. The outline and main ideas are as follows. It is
all a question of justifying differentiation with respect to the variables §, (i =
with regpect to the parameters. undey the improper integral sign of {2.3) . For H'n_s,
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(2.3) as
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where the variables of integration u and p are assumed to be connected by the second equation
of 12 11

Ndwai w
We next consider the result of a formal differentiation of (2.3) with respect to §;:
l:‘u
I ®) = — \ [(Fung; + Fo) up + Fung ] hdp — pg Fuh jumy, (2.9)
9

By means of estimates for the factors and terms of the integrand, we can obtain the
ineguality
H(Fyug; + F‘éi) uy + Fuﬂﬁi}hi Lep e,
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Wil as ji,-—rs UuniIornLy in any sufficient y smal uei\:jzu rhood ¥ of an .L
Ees {0} (V. must have a compact closure)}. Theimproper in egral in (2.9) is thus locally
unlformly convergent and, by a well-known theorem of analysis (/8/,p.794 ), the differentiation
A e mornran 3w Er T P §
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The proof of (2.6), (2.7) is cobtained by direct evaluations in (2.9), using integration

AT mn i
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by parts. The fact that Ge M (see (2.8)) is proved by noting that both terms on the right-
hand side of (2.7), and hence their sum G, belongs to module M.
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Relations (2.6) and (2.7) enable us to evaluate any partial derivatives of the function
A, using a standard recurrence procedure, provided, of course, that in domain ¥V C R¥\ {0}
derivatives of sufficiently high order of the function Yo Hy exist (in the ellipsoidal layer
covering the domain V).

Corollary. Under the conditions of Theorem 1, the potential A of the ellipsoidal dis-
tribution have in R®\ {0} continuous partial derivatives of first order, and second-order
derivatives which are defined almost everywhere.

Proof. For clearly, in view of (2.8), the integral in (2.6) (the second term on the
right-hand side) converges uniformly in a fairly small neighbourhood V of any fixed point
te R\ {0}, and hence is a continuous function in RS\ {0}. The first term in (2.6) is likewise
a continuous function in RS\ {0}, since h is continuous. With regard to the second derivatives,
the same Theorem 1 guarantees continuous derivatives of the second term of (2.6). For the
first term, however, the derivatives are defined almost everywhere, since the function h is
absolutely continuous.

If is often more convenient to have expressions for the derivatives directly in terms
of density %. For this, we use.

Theorem 2. If, in a neighbourhood V of the point §'e R®*\ {0}, the function 9yop,&E
C? (V),p N, while ye& L, (R,), then in this neighbourhocod A & CP*t(V), and given any integer
k such that 2k p+ 2, we have
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DA® = ) Ri®)vOlro (B)] + (2.10)
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where R; are rational functions, defined in R®\ {0}, while the function F& M, and in its
representation (2.4) we have to put P,°(§) =0, and D¥* is the differential operator

ak

=_BE-1."‘BE k’aﬁak_' y kit ket ks=k, k=(k, ks ks)
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Proof. We use induction on k, starting with k=2,
By Theorem 1, we can obtain by direct calculations in V:

Au®=— 20 | Ul e (=1,2.9) (2.41)

and for the second-oxrder derivatives:
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Clearly, F (u,%) has the form required in the theorem and has the necessary properties.
If we make the inductive assumption that (2.10) holds for some k > 2, then, by using
Theorem 1 for the integral appearing in (2.10) and performing the appropriate .calculations,

we obtain the relations
3
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We can reduce (2.13) to the form (2.10):

k=1
S DA E]= Y QiE B+ RS G, HvIn Hldu
=0 +

(i=1, 2, 3)

where {;(§) are rational functions, while G (u,§), like F (u,§), satisfies the conditions
of the theorem.

Using (2.13), we can computer-evaluate automatically the coefficients of the power

expansion of the Hamiltonian function H in the neighbourhood of an equilibrium position, up

to any required order, provided, of course, that y is suitably smooth. In combination with
methods for the automatic evaulation of normal forms H (e.g., the Depris-Hory method*,
(*Markeev A.P. and Sokol'skii A.G., Some computational algorithms for the normalization of
Hamiltonian systems, Preprint In-ta prikl. matem. Akad. Nauk SSSR, Moscow, 31, 1976.) we

can obtain a method for a numerical-analytic study of the equilibrium positions of the problem
mentioned at the start of Sect.2.

The author thanks V.G. Demin for his interest.
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APPROXIMATE SOLUTION OF SOME PERTURBED BOUNDARY VALUE PROBLEMS

L.D. AKULENKO and A.S. SHAMAYEV

A perturbation method for solving some linear boundary-value eigenvalue
and eigenfunction problems is developed and justified. The class of
problem considered is frequently encountered in applications when
investigating elastic oscillatory systems with distributed and slightly
variable parameters (a string, an elastic shaft, a beam, etc.), described
by boundary value problems for hyperbolic-type equations with variable
coefficients. A procedure for the approximate solution of these problems
is developed with the required degree of accuracy with respect to the
small parameter characterising the non-homogeneity. In particular,
Dirichlet's problem, describing the oscillations of non-homogeneous elastic
systems with clamped ends, is considered.

1. Formulation of the problem. The eigenvalue and eigenfunction problem for a

linear perturbed second-order equation is considered in the real domain:
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